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ABSTRACT

Operational cloud forecasts generated by the Coupled Ocean–Atmosphere Mesoscale Prediction System

(COAMPS)1 were verified over the eastern Pacific Ocean. The study focused on the accuracy of cloud

forecasts associated with extratropical cyclone and convective activity during the late winter and spring of

2007. The condensed total water (liquid and solid) path was used as a proxy for cloud cover to compare the

forecasts with retrievals from the Geostationary Operational Environmental Satellites (GOES). Analyses of

the GOES retrievals indicate that deep cloud systems were generally well represented during daylight hours.

Thus, the bulk of the verification focused on the general aspects of quality and timing of these deep systems.

Multiple statistics were collected, ranging from simple correlations and histograms to more sophisticated

fuzzy and composite statistics. The results show that synoptic-scale systems were generally well predicted to

at least two days, with the primary error being an overestimation of deep cloud occurrence. Smaller subsynoptic-

scale systems were subject to spatial and timing biases in that a number of the forecasts were lagged by 3–6 h.

Despite the bias, 60%–70% of the forecasts of the mesoscale phenomena displayed useful skill.

1. Introduction

Many current technologies are increasingly sensitive

to the effects of cloud cover. Cirrus often interferes with

military applications that depend on a clear line of sight

(Norquist 1999). Low ceilings impact both civilian and

military aviation (Carter and Glahn 1976), and in this

era of tight schedules even minor disruptions have sig-

nificant consequences. Depending on the application,

depictions of the cloud state are desired at many scales,

and accurate forecasts at long lead times are highly

desirable for planning purposes. However, cloud pre-

diction has long been problematic.

The large range of scales (from microscopic to syn-

optic) impacting cloud development is a challenge to

even the highest-resolution mesoscale models. How-

ever, bulk cloud parameterizations and microphysical

schemes have recently shown the ability to produce

useful cloud forecasts. Chaboureau and Pinty (2006)

compared brightness temperature forecasts from the

nonhydrostatic Méso-NH regional model with Meteo-

sat Second Generation observations over Brazil. With a

horizontal grid spacing of 30 km, the model successfully

reproduced diurnal variations in convective cloudiness

as well as lower-frequency variations produced by

changing weather regimes. Other comparisons by Cha-

boureau et al. (2002) show good qualitative agreement

between simulated cloud systems and retrieved ice and

liquid water path observations. These case studies were

conducted for both midlatitude and subtropical cloud

systems using horizontal grid resolutions from 12 to 75

km. Additional studies by Söhne et al. (2006), Li et al.

(2005), and Chevallier and Kelly (2002) have noted

good quantitative agreement between cloud forecasts

and the accompanying satellite observations.

As model resolution increases, cloud forecasts become

increasingly realistic. Like precipitation forecasts, this real-

ism adds value but does not necessarily lead to higher scores

(Ebert and McBride 2000). Bieringer et al. (2006) com-

pared 3-km fifth-generation Pennsylvania State University–

National Center for Atmospheric Research Mesoscale

Model (MM5) ceiling forecasts with those from the parent

9- and 27-km domains, as well as forecasts from a separate

1 COAMPS is a registered trademark of the Naval Research

Laboratory.
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20-km Rapid Update Cycle (RUC) domain. Categorical

statistics based on pointwise comparisons with auto-

mated observations showed comparable performance at

all resolutions. However, spatial variability within the 3-

km nest was a potential indicator of forecast error. Er-

rors were significantly reduced by averaging the 3-km

forecasts over a 54 km 3 54 km region. Söhne et al.

(2006) noted that high-resolution forecasts of North

African convective clouds performed significantly bet-

ter in a spatially averaged sense than their lower-reso-

lution counterparts. Essentially these studies indicate

that the small-scale variance is better simulated at high

resolution. Even if the forecast weather features are not

identically located in their observed positions, these

gains can be very useful if they lead to improvements in

probability forecasts of high impact weather.

In this paper, cloud total liquid 1 ice condensed wa-

ter path (LWP) forecasts from the Coupled Ocean–

Atmosphere Mesoscale Prediction System (COAMPS;

Hodur 1997) are compared with Geostationary Opera-

tional Environmental Satellite (GOES) retrievals. The

main goal of the verification is to determine the viability

of cloud forecasts over the eastern Pacific, where vast

areas of sparse data present a uniquely challenging

forecast environment. The fact that COAMPS produces

useful forecasts in this region attests to the many ad-

vances in data assimilation and physics representation.

Abundant cloudiness in this region poses a unique

challenge to verification as cloud amount forecasts score

deceptively well because of the high probability of a

correct random forecast. Upper-tropospheric cloudi-

ness is particularly interesting for military aviation, but

it can be quite difficult to verify because of brightness

temperature ambiguities. Thus, the focus will be on the

deep, cloud-producing systems typically associated with

synoptic fronts and subtropical convection. Since these

systems are responsible for a large percentage of upper-

tropospheric clouds, tracking the forecast accuracy of

these systems is helpful. Verification statistics of many

types will be used to track model performance, starting

from some basic statistics and progressing to more so-

phisticated methods. New verification techniques have

recently shown promise in accounting for the small-

scale spatial errors. Fuzzy methods (Roberts and Lean

2008) and the composite method (Nachamkin 2004) will

be employed here to evaluate forecast performance

with respect to scale as well as event occurrence.

2. Data

a. Atmospheric forecast model

The operational nonhydrostatic COAMPS forecasts

for the eastern Pacific conducted at the Fleet Numerical

Meteorology and Oceanography Center (FNMOC) were

selected for this study. The domain setup consists of

two one-way nested grids with horizontal spacings of

81 and 27 km (Fig. 1), and 30 vertical sigma levels with

the lowest at 10 m AGL and the highest near 35 km.

Forecasts were initialized daily at 0000, 0600, 1200,

and 1800 UTC, using the Naval Research Laboratory’s

Atmospheric Variational Data Assimilation System

(NAVDAS; Daley and Barker 2001). The previous 6-h

forecast acted as a first guess. Boundary conditions were

supplied from the Navy Operational Global Atmo-

spheric Prediction System (NOGAPS; Hogan et al.

2002) at 3-h intervals using a Davies (1976) scheme.

Subgrid-scale convection was parameterized using the

Kain–Fritsch scheme (Kain and Fritsch 1993), while the

explicit microphysics were parameterized using a mod-

ified Rutledge and Hobbs (1983, 1984) scheme de-

scribed by Schmidt (2001). These modifications include

predictive equations for graupel and drizzle, as well as

the Meyers et al. (1992) ice nucleation, homogeneous

freezing, ice multiplication processes, and nonzero

pristine ice fall speeds. For this study, the 27-km LWP

forecasts valid from 0 to 48 h were collected for vali-

dation from 1 February through 31 May 2007. Notably,

the LWP retrievals (described below) were restricted to

daylight hours. Thus, simulations initialized at 0000 UTC

were used to verify forecasts with lead times of 0–3,

18–27, and 42–48 h, while the runs initialized at 1200 UTC

were used to verify the 6–15- and 30–39-h forecasts.2

Some fluctuations occurred in the statistical time series,

but the general trends remained consistent for both ini-

tialization times.

b. Satellite observations

GOES LWP observations were retrieved using opti-

mal estimation techniques described by Mitrescu et al.

(2006). The method involves prescribing forward radi-

ative and microphysical models to retrieve cloud prop-

erties from passive multispectral observations. During

daylight hours, GOES channels 1, 2, and 4 are used to

retrieve cloud-top temperature, cloud-top effective ra-

dius, and cloud optical depth. LWP is in turn derived

from these variables. In this study, only daytime re-

trievals were used as they have proven to be more re-

liable. The radiative forward model follows Nakajima

and King (1990), Miller et al. (2000), and Heidinger

(2003). The atmosphere, cloud, and land/ocean surface

are represented as three separate layers. Cloud optical

depth calculations rely on reflectance measurements, and

a plane-parallel, homogeneous atmosphere is assumed.

2 The 0600 and 1800 UTC interim runs were not verified.
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Surface albedo is prescribed from the International

Geosphere Biosphere Program (IGBP) dataset. Cloud

particles are assumed to follow a Gamma size dis-

tribution with a constant width throughout the cloud

(Mitrescu et al. 2005). Ice particles are assumed to have

a spherical cross section with a fixed effective density. It

should be noted that a Marshall–Palmer size distribu-

tion is assumed for the liquid species in the COAMPS

microphysics scheme. Since mass mixing ratio is pre-

dicted, the assumed distribution primarily affects the

partitioning of the particles and not the total mass.

Thus, the difference in the distributions is not expected

to produce major differences in the integrated LWP

calculations.

The native footprint of the satellite retrieval was ap-

proximately 4 km. For comparison with the COAMPS

output, these data were linearly averaged onto the 27-km

forecast grid. Representativeness errors were alleviated

as the satellite data themselves represent averages over

an area. To minimize errors associated with land albedo,

low zenith angle, and model boundary effects, a data

window was defined from 1608 to 1208W longitude and

308 to 508N latitude (Fig. 1). All verification was con-

ducted within the area defined by this window.

Nakajima and King (1990) and Miller et al. (2000)

estimate optical depth and effective radius errors to be

as high as 50%, thus LWP may also contain errors up

to a factor of 2. For this study, the LWP output was

carefully studied visually for some indication of the

nature of these errors. At low solar zenith angles LWP

was generally underestimated, and occasionally large

discrepancies occurred when shadows developed in

regions of textured clouds. Given the observational

ambiguities it was decided to present the statistics in a

bias-corrected format. Though quantitative bias and

RMS errors of the forecasts will remain unknown, useful

statistics can still be derived pertaining to the forecasts of

the general positions of large cloud systems.

The bias was removed by comparing LWP measure-

ments with the forecasts over bimonthly intervals in a

series of scatter diagrams. Direct point-to-point com-

parisons were of little use because of the high variability

and the presence of phase errors. Instead, the phase

errors were statistically removed by sorting the fore-

casts and observations by magnitude at each realization

and deriving regression relationships from the sorted

distributions (Fig. 2). The resulting average LWP dis-

tributions exhibited considerable variability, especially

FIG. 1. The COAMPS 81- and 27-km eastern Pacific operational domains are indicated by the

thin and thick rectangles, respectively. The GOES analysis subdomain extends from 308 to 508N

and 1208 to 1608W as indicated by the dark dotted labeled lines.
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at large values. During the middle portions of the day

(Fig. 2a), the scatter was relatively uniform about the

x 5 y line. However, by late afternoon (Fig. 2b) the

zenith angle bias manifested itself as a quadratic error

that was generally correctable using regression techniques.

To minimize the effects of the bias, the majority of the

statistics discussed herein will be limited to periods

when most of the grid experienced relatively high zenith

angle, namely, 1800–2100 UTC. As Fig. 2a indicates, the

systematic bias was relatively small during these times.

Given the observational data caveats, it is not sur-

prising that Chevallier and Kelly (2002) and others note

FIG. 2. Scatter diagrams of the magnitude-sorted LWP forecasts and observations for Feb-

ruary and March 2007 for the (a) 21- and (b) 24-h forecasts. Third-order regression calculations

are represented by solid curves while x 5 y is represented by the light dotted line.
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that brightness temperature comparisons are a more

consistent means of comparing the model with the ob-

servations as retrieval errors are not incorporated.

However, the derived products from both the model

and the satellite are regularly used for day-to-day op-

erations. Most user applications rely on cloud height

and depth information that brightness temperature alone

does not provide. The compromise entailed by present-

ing the results in a user-oriented space was worth the

additional error, especially if both products are widely

used. The results should thus be viewed as a general

consistency check between the predictions and obser-

vations of large-scale deep cloud areas.

3. Results

a. Point-to-point comparisons

The 21-h forecast from 0000 UTC 1 February (Fig. 3)

graphically demonstrates the difficulties associated with

point-to-point verification of high-gradient fields. The

most prominent features include a north–south frontal

band through the central portions of the analysis grid

(near 1408W), along with a region of scattered post-

frontal clouds west of the front (near 1538W). While

the general location of the cloud features was correctly

predicted, the scatter diagram inset in Fig. 3b shows

little correlation between the two LWP fields. A closer

look reveals that the northern portions of the frontal

band lag to the west of the observations, while the

southern portions are too intense and narrow. The bro-

ken nature of the cloudiness in the central and southern

portions of the band is also not well simulated. Cloud

coverage to the west of the front is underrepresented,

and the leading edge of the cloud field is 18–28W of its

observed position. Although these errors are relatively

small in scale, high LWP gradients significantly reduce

the correlations. The traditional verification scores

presented in this section measure the direct field cor-

respondence, providing little allowance for small-scale

errors in high-variance fields. Thus, the scores should be

interpreted with caution.

The 4-month average correlations (Fig. 4) reflect

some of the features mentioned in the example above.

While many of the forecasts appeared to be viable on

visual inspection, the correlations were generally low.

Correlation coefficients start below 0.5 at the analysis

time3 and slowly decrease through the forecast. High

variability at small scales essentially acts as noise (Fig. 3),

reducing the overall strength of the correlations. The

slow degradation of the correlations with time primarily

reflects medium- to large-scale errors. Daily correla-

tions at the synoptic scale (discussed later) were on the

order of 0.8, and these large-scale correlations also

dropped very slowly with lead time. The choppy nature

of the descent is likely due to the variations in LWP

magnitude with sun angle. GOES persistence correla-

tions were calculated by comparing the satellite obser-

vations valid at the analysis time with the observations

over the ensuing 48-h period. The persistence correla-

tions drop rapidly with time, reflecting the complex

structure and rapid evolution of the cloud field. GOES

LWP persistence drops below COAMPS after 3 h, while

the infrared (IR) cloud-top persistence forecast decays

more slowly. The IR field is probably a better overall

representation of the satellite persistence forecast decay

rate as this field is not sensitive to solar zenith angle.

Note also that LWP persistence was only calculated

against forecasts initialized at 0000 UTC because dark-

ness prevented the collection of LWP observations

between 0600 and 1500 UTC.

Perhaps the most interesting aspect of Fig. 4 is re-

flected in the behavior of the lagged forecast correla-

tions. These correlations were generated by comparing

current observations with forecasts valid 3 h later than

(fm3) and 3 h earlier than (fp3) the observation time.

The fp3 and on time (f00) forecast correlations were

about the same magnitude, while the fm3 correlations

were considerably lower. Tests using a t distribution

indicate that the differences between the f00 and fm3

correlations are significant at the 99% confidence level

for all lead times prior to 42 h. Tests with 6-h lags (not

shown) resulted in correlations at or below the fm3

levels. These results indicate that the model tends to

be too slow with the progression of weather systems

through the region. The near equality of the fp3 and

f00 correlations suggests a peak somewhere between

them, reflecting an average lag error in the 0–3-h range.

The phase error is not universal, though, as indicated

by the example in Fig. 3. Note the northern portions

of the frontal band (located near 1408W) are lagged in

the forecast, north of about 408N, while farther south

the frontal position is better simulated. Analysts at

FNMOC have relayed similar anecdotal accounts of

3–6-h time lags in the precipitation forecasts (J. Lerner,

FNMOC models and data section, 2007, personal com-

munication).

Although much of the bias was removed from the

data, average LWP histograms (Fig. 5) still reveal some

interesting trends. The majority of the observed LWP

values fell into the lowest threshold categories, with

values below 100 g m22 accounting for about 60% of the

distribution. Most of the LWP values below 200 g m22

derive from cirrus or boundary layer stratus clouds that3 LWP values were not assimilated.
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often cover vast regions of the Pacific. Deeper precipi-

tating clouds are generally associated with values above

500 g m22. In the model, precipitating convective clouds

exhibited values over 3000 g m22, though the corre-

sponding observed values rarely exceeded 2000 g m22.

These clouds are highly three-dimensional and thus

violate the plane-parallel and vertical homogeneity as-

sumptions in the retrievals. Multidirectional scattering

of outgoing radiation likely results in underestimates of

LWP. A simple hydrostatic calculation reveals that even

a modest average liquid mixing ratio of 0.5 g kg21 over a

700-hPa depth from 1000 to 300 hPa results in an LWP

of over 3500 g m22, which is well above any of the ob-

served values.

FIG. 3. (a) The COAMPS 21-h LWP forecast and (b) the verifying GOES analysis. The shading is in grams per

meter squared as represented by the scale. The scatter diagram inset in (b) represents a point-to-point comparison

between the predicted and observed fields.
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The observed and predicted distributions deviate sig-

nificantly from one another at values below 100 g m22.

The regression curves (Fig. 2) did not remove these

biases as the absolute differences in LWP were small and

highly compressed at the low end of the scale. Correc-

tions were primarily weighted by the very large biases

at the high end of the LWP distribution. The low-end

biases likely result from deficiencies in subgrid-scale

cloud prediction. To demonstrate this, the observed

values were reinterpolated to the model grid such that all

grid areas with less than 50% cloud coverage were au-

tomatically set to a value of LWP 5 0 g m22 (clear). All

grid points covering observed areas of scattered or partly

cloudy conditions were thus eliminated. The resulting

distribution, represented by the bold horizontal lines in

Fig. 5, is much closer to the forecasts, especially for clear

skies. A notable deviation from this trend was the ten-

dency for the model to produce too much thin cirrus.

Much of this overproduction occurred in areas that were

otherwise covered by low stratus, thus leaving LWP

statistics relatively unaffected.

The Hanssen–Kuipers discriminant (HK) and the

equitable threat score (ETS) are presented in Fig. 6 for

completeness, as these values are often presented in

the verification literature. The HK discriminant ranges

from 21 to 1, with 1 being a perfect score, 0 indicating

no skill, and 21 indicating a perfect negative correla-

tion. Ebert et al. (2004) note that HK is the false-alarm

rate subtracted from the probability of detection. It

reflects the ability of the forecast to discern between

cloudy and clear areas. The ETS measures the number

of correct forecasts in proportion to the total number of

forecasts and observations of a given event, adjusted for

the probability of a correct random forecast. Since cloud

areas were often extensive, the random adjustment

factor was sometimes as large as the ETS itself for lower

LWP thresholds.

For consistency, the scores were calculated only at the

time of the maximum average zenith angle (2100 UTC)

using forecasts initialized at both 0000 and 1200 UTC.

Since the scores are threshold based, a value of 500 g m22

was chosen to represent the deeper, precipitating sys-

tems. These systems reflect the majority of the well-

defined cloud entities that tracked across the region.

Lower thresholds produced artificially high scores as

both cirrus and stratus clouds could share the same LWP

value. Given the poor point-to-point correlations the

scores were generally low. However, both scores indi-

cated some skill through much of the forecast, with little

reduction with increasing lead time.

The sensitivity of the pointwise scores to small-scale

errors is mitigated by considering averages over larger

areas. For example, the general ability for the model to

discern between synoptically disturbed and quiescent

conditions is an important indication of overall perfor-

mance, especially in data-sparse regions. Figure 7 depicts

FIG. 4. Correlation coefficients between the predicted and observed variables with respect to

forecast hour. GOES infrared cloud-top height (pers cth) and LWP (pers lwp) persistence

forecasts are represented by the thick solid and dashed lines. The COAMPS forecasts valid at

the observation time (f00), 3 h earlier than the observation time (fm3), and 3 h later than the

observation time (fp3) are indicated by the light dotted, dashed–dotted, and short dashed lines,

respectively.
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the daily total coverage of LWP above 500 g m22 as a

fraction of the entire analysis region. The model was

generally able to predict periods of disturbed weather,

though coverage errors on the order of 5% were not

uncommon on a given day. The correlation coefficients

at the 9-, 21-, 33-, and 48-h lead times were 0.82, 0.87,

0.80, and 0.80, respectively. These values were consid-

erably higher than the point-to-point correlations in Fig. 4,

reflecting the improved performance at large scales. The

rate of decrease with time was also slower than that in

Fig. 4, again due to the large scale. The reduction in cor-

relation with lead time was primarily due to increasing

FIG. 5. The bias-corrected 21-h LWP forecasts (light bars) and observations (dark bars). Values along the

vertical axis represent the average coverage over the analysis grid during the 4-month period. Horizontal axis

values represent the lower bound of each bin. Standard deviations are depicted by the vertical solid lines. Thick

horizontal lines represent the observations when all grid squares containing less than 50% cloud coverage are

considered as clear.

FIG. 6. The 4-month-average HK discriminant (solid line) and ETS (dashed line) as a function

of forecast lead time.
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random scatter, and the slope of the regression lines

remained relatively close to unity.

b. Multiscale statistics

A number of new verification methods have recently

been developed to sample forecast accuracy over a range

of length scales. Verifying at multiple scales provides a

means to gauge the spatial forecast error. If the errors

are small in scale the statistics will rapidly improve with

increasing sample area. Ebert (2008) reviews a number

of these methods, some examples include upscaling

(Zepeda-Arce et al. 2000), wavelet decomposition

(Casati et al. 2004), and the fuzzy neighborhood method

(Roberts and Lean 2008). Since clouds often occur as

fractional or amorphous elements that are difficult to

characterize, the fuzzy neighborhood method was par-

ticularly appealing as accuracy is expressed in terms of

event frequency (Roberts and Lean 2008; Ebert 2008).

The method was also very simple to code and it ran very

efficiently within the existing software.

The fuzzy neighborhood method works by calculating

verification metrics over a series of squares, or neigh-

borhoods, of increasing size centered at each grid point.

Larger neighborhoods allow for displaced forecast

values to be counted as correct. We follow Roberts and

Lean (2008) in using the fractions skill score (FSS) as a

skill metric. The FSS is defined as

FSS
(n)

5 1�
MSE

(n)

MSE
(n)ref

, (1)

where MSE(n) refers to the mean-square error over a

neighborhood of length n as given by

MSE
(n)

5
1

N
x
N

y

�
N

x

i51
�
N

y

j51
[O

(n)
i, j
�M

(n)
i, j

]2. (2)

The MSE is calculated from the binary field I created by

imposing a threshold on the data to be verified. Here, all

LWP points exceeding 500 g m22 are assigned a value of

I 5 1, with I 5 0 assigned to all other points. The MSE is

summed for each forecast over the entire analysis grid

consisting of Nx by Ny points, where Nx 3 Ny 5 9971.

The quantities O(n)i, j
and M(n)i, j

represent the sum over

each neighborhood of the observed and predicted com-

ponents of the binary field centered at each i, j grid

point:

O
(n)

(i, j) 5
1

n2
�

n

k51
�

n

l51
I

o
i 1 k� 1� (n� 1)

2
, j 1 l � 1

�

� (n� 1)

2

�
and (3)

FIG. 7. Bias-corrected 21-h forecasts and observations of LWP values $500 g m22 as a

function of total coverage over the satellite analysis grid. The regression relation is represented

by the solid line while x 5 y is represented by the dotted line.
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M
(n)

(i, j) 5
1

n2
�
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k51
�

n

l51
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2
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�

� (n� 1)
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�
. (4)

The MSE is zero for all neighborhoods where equal

numbers of observed and predicted points exceed the

threshold value, regardless of the position of the points

within each neighborhood. To mitigate fluctuations

in the MSE related to coverage, as well as to ensure

that the FSS retains a value between 0 (no skill) and 1

(perfect skill) Roberts and Lean normalize the score

with a reference MSE(n)ref
representing the largest pos-

sible MSE from a given set of observed and predicted

fractions:

MSE
(n)ref

5
1

N
x
N

y
�
N

x

i51
�
N

y

j51
O2

(n)
i,j

1 �
N

x

i51
�
N

y

j51
M2

(n)
i,j

2
4

3
5. (5)

The above system was used to calculate the FSS over

scales ranging from a single grid point (27 km) to a

41 3 41 point square (1107 km). Again to minimize bias

issues, observations from 2100 UTC were used exclu-

sively. The resulting curves in Fig. 8 show the progres-

sion of the FSS over the range of scales listed above.

Point-scale FSS values are quite low, but the FSS rap-

idly increases with increasing neighborhood scale. This

behavior is consistent with the example in Fig. 3 re-

flecting that the general patterns in the forecast are

better than the point-scale values.

The neighborhood scale with the optimum combina-

tion of forecast accuracy with minimal loss in precision

due to averaging is largely up to the individual user.

Since the neighborhood method is relatively new few

studies exist to offer comparative scores from other

cloud forecasts. Söhne et al. (2006) reported FSS values

near 0.8 at length scales of 150 km for a set of 6-h

brightness temperature forecasts of anvil cloudiness

for a single flash flood case. This case was clearly well

simulated considering the horizontal grid spacing was

50 km in some of their sensitivity studies. Their score is

likely on the high end of the forecast quality scale, es-

pecially for convection. The eastern Pacific FSS in our

study is somewhat lower, though probably more repre-

sentative because of the large sample size. Murphy and

Epstein (1989) also noted that the FSS is sensitive to

the grid coverage of the field subject to the threshold.

Large coverage tends to score higher, thus the grid size,

threshold, and event climatology must be similar for

adequate comparison.

Roberts and Lean (2008) derived two simple mea-

sures of quality based on the FSS for random and uni-

form forecasts. The FSS for random forecasts with the

same fractional coverage over the domain as the event

to be verified is simply equal to the coverage, which was

about 0.12 in this case (Fig. 8). Uniform forecasts were

defined as a forecast at the gridpoint scale (n 5 1) with

the fraction/probability equal to the average fractional

FIG. 8. The variation of the FSS with neighborhood length for the 9-, 21-, 33-, and 45-h

forecast lead times. The FSS associated with the 21-h GOES LWP persistence forecast (p21) is

indicated by the dashed–dotted line. The uniform and random FSS are displayed as horizontal

dotted and dashed horizontal lines, respectively.
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coverage of the event to be verified. The uniform FSS

is defined as being half-way between the random and

perfect skill, which in this case was 0.56 (Fig. 8). Uniform

forecasts possess a reasonable amount of skill, but have

zero precision. Roberts and Lean contend that FSS

scores above the uniform score represent the smallest

scale over which the forecast contains useful informa-

tion. Applying this standard here indicates that length

scales between 135 and 189 km (5–7 grid points) should

provide useful forecasts. This result is not unreason-

able given well-known constraints on model resolution.

Additional tests with the GOES persistence forecasts

showed a large degradation by 21 h (Fig. 8). The per-

sistence FSS remained below the uniform skill threshold

for neighborhoods below 900 km on a side. Unfortu-

nately, LWP persistence was not available for most other

lead times prior to 21 h because of daylight constraints.

c. Composite statistics

The question of forecast utility and optimal length

scale can be further investigated using composite meth-

ods developed by Nachamkin (2004). Composites pro-

vide visual and quantitative feedback on the average

state of the forecasts and observations when specific

events are expected. The basic premise of the composite

method involves identifying events of interest in both

the forecasts and the observations and creating com-

posites based on the event occurrence. Accurate fore-

casts result in strong similarities between the observed

and predicted spatial distributions, while systematic

spatial errors manifest themselves as displacements in

the composited fields. For this study moderate- to small-

sized events were composited in an effort to gauge the

mesoscale performance. All deep cloud events con-

taining between 100 and 600 contiguous grid points with

LWP values equaling or exceeding 500 g m22 were

composited. These typically represent convective cloud

clusters, small developing cyclones, or cold cutoff por-

tions of mature cyclones. The events in this composite

reside in the low to midportions of the spatial range that

the neighborhood method indicated would be viable

forecasts (Fig. 8).

The composite contingent on the occurrence of a

predicted event in the 21-h forecasts is displayed in

Fig. 9. The sample comprised 86 events distributed over

the analysis region. For a given event, all points on the

41 3 41 point (1107 km 3 1107 km) sample grid that fell

outside the satellite analysis region were ignored as bad

data. Thus, the gradient in the number count in the

northern portions of the composite (Fig. 9b) indicates

that a number of events occurred near the northern

boundary of the satellite analysis region (508N). This

result reflects the prevalence of cyclone activity north of

FIG. 9. Statistics from the composite based on the existence of a

predicted mesoscale event in the 21-h forecasts. (a) The average

observed (contoured) and predicted (shaded) LWP values are in

grams per meter squared. (b) The number of valid data points is

contoured and the region of LWP differences between the ob-

served and predicted fields $50 g m22 at the 95% confidence level

is shaded. (c) The observed (contoured) and predicted (shaded)

occurrence frequency of LWP values $500 g m22.
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408N. A distinct shift was evident in both the average

LWP (Fig. 9a), and event frequency distributions (Fig. 9c)

suggesting that the model forecasts were too far south

and west of the observations. Given that the prevailing

flow is often southwesterly during disturbed weather the

temporal lag in Fig. 4 is consistent with this spatial phase

shift. The statistical significance of the spatial shift was

tested using a t distribution with a null hypothesis that

the observed and predicted average LWP differed by at

least 50 g m22. The region of statistical significance at

the 95% confidence level, indicated by the shading in

Fig. 10b, covers the center of the predicted events, but

does not extend northeastward to the corresponding

lobe of increased observed LWP (Fig. 9a). Reduced

number counts and high standard deviations lowered

the statistical confidence in this area.

The composite of the forecasts contingent on the

occurrence of an observed event (Fig. 10) depicts a less

distinct, though still apparent spatial shift. The region of

statistical significance (Fig. 10b) extends farther north-

east, due in part to increased number counts. A total of

124 events were sampled, indicating more small- to

midsized events existed in the observations than the

forecasts. The disparity likely results from the enhanced

variability in the observations compared to the forecasts

(Skamarock 2004). Although the observations were av-

eraged to the model grid, a given cyclone often con-

sisted of several closely associated mesoscale cloud

areas. Note the broken nature of the observed frontal

cloudiness in Fig. 3 compared to the forecast. As such

the observation-based composite likely included a num-

ber of essentially synoptic-scale events. Cloud coverage

constraints could serve to filter the observed events,

though such efforts were not attempted here as both

composites indicate the same basic trends.

A greater understanding of the nature of the forecast

errors as well as the verification results can be achieved

by combining concepts used in both the neighborhood

and composite methods. Although the FSS is very use-

ful for comparing forecasts with one another, applying

the FSS to obtain an optimal length scale is somewhat

abstract. How do the curves in Fig. 8 translate to fore-

cast performance? In an attempt to address this issue,

events in the composite sample above were recom-

posited using criteria based roughly on the FSS. For each

event, a single sample FSS was defined using Eq. (1),

where MSE(n) was the binary MSE over the n 3 n re-

gion centered on the event. The quantity MSE(n)ref
was

defined individually for each event sample using Eq. (5).

Event forecasts were grouped into high- and low-quality

categories based on whether the single sample FSS met

or exceed the average FSS at scale n as shown in Fig. 8.

While the comparison is only an approximate analogy, it

FIG. 10. As in Fig. 9, but for the composite based on the occurrence

of an observed mesoscale event.
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does provide insight regarding the ability of the FSS to

assess error as well as the nature of the error associated

with the lower-quality forecasts.

Two FSS criteria at opposite ends of the spectrum,

squares with sides of n 5 5 and 25 grid points (135 and

675 km), were applied to the mesoscale events depicted

in Figs. 9 and 10. For consistency, the FSS for the 21-h

forecasts was applied to define the forecast quality at all

lead times. Based on the calculations in Fig. 8 the

critical FSS values for the 5 and 25 point areas were 0.57

and 0.79, respectively. As might be expected, the five-

point criteria were quite restrictive (Fig. 11). The small

box size required a large portion of very close or col-

located positive forecasts and observations to exceed a

given FSS. Only 40%–50% of the events in the fore-

cast-based composite met or exceeded the critical FSS,

while a somewhat greater 55%–65% of the observation-

based events were accepted. Relaxing the criteria to

25 points pushed the acceptance rate above 70% for

both composites during the early portions of the fore-

cast, with decreased rates at longer lead times. The gains

in the forecast-based composite were markedly higher

than those in the observation-based composite, re-

flecting the smaller phase shift as well as the likelihood

that some larger-scale events were incorporated in the

sample.

The effect of the scale-based acceptance criteria can

be illustrated by comparing composites of the forecasts

that were defined to be of high and low quality. Note in

the figures that the high-quality forecasts are loosely

referred to as ‘‘hits.’’ The forecast-based event fre-

quency distributions for the 21-h forecasts show strong

agreement between the observations and predictions

for the five-point criteria hits (Fig. 12a). As mentioned

above, the strict criteria selected only those events

where the forecasts agreed closely with the observa-

tions. In Fig. 12b, the composite of the five-point false

alarms4 displays considerably less agreement between

the predicted and observed event frequencies. However,

a coherent region of observed events is evident to the

north and east of the forecasts. These observations result

from a subset of shifted forecasts that were still useful

despite having failed the small-scale quality criteria. In-

creasing the box scale to 25 points (Fig. 12c) shifted these

forecasts to the higher-quality bin. The resulting fre-

quency distributions are similar to the original composite

(Fig. 10). In fact, observed event frequencies were close

to zero over most of the low-quality composite (Fig. 12d),

indicating that these forecasts were truly false alarms.

The FSS frequency distributions for the observation-based

composite (not shown) display similar trends to those de-

picted in Fig. 12. Although a greater number of these events

met the five-point FSS criteria, a subset of phase-shifted

forecasts was still evident in the five-point low-quality

forecasts. Similarly, the 25-point low-quality forecasts

depicted very little agreement between the observed

and predicted frequency distributions. Forecasts that

fail the 25-point criteria likely contain significant error.

A separate composite study using large events with

sizes ranging from 601 to 3000 contiguous grid points

with LWP values at or above the 500 g m22 depicts

much improved performance (Fig. 13). For both the

5- and 25-point FSS criteria, over 80% of the forecasts

were binned as high quality at all lead times for the

observation-based composite. The forecast-based rates

were somewhat lower. The differences between the

5- and 25-point acceptance rates were less than those

for the small events, primarily because of the increased

FIG. 11. The percentage of correct mesoscale event forecasts (hits) as defined by the FSS

criteria for the 5-(solid lines) and 25-point (dashed lines) neighborhood length. Solid triangles

represent the values derived from the observation-based composite while open squares rep-

resent those from the forecast-based composite.

4 Because this composite is based on the occurrence of a forecast

event, a low-quality forecast will most likely be a false alarm.
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event size and attendant increase in coverage near the

event center. Notably, displacement errors were much

less evident, with no statistically significant trends. At

this scale, the event shapes were quite complex, result-

ing in increased variability near the edges. Also, fewer

events were sampled, with sample sizes ranging from

38 to 53 depending on the lead time. Large sample sizes

may be necessary to determine if no systematic shifts

truly exist at this scale. Given these caveats, the primary

source of error for the large-scale events was a tendency

for the model to predict too much cloud cover. The

resulting false alarm tendency was responsible for the

reduced quality in the forecast-based composite (Fig. 13).

4. Conclusions

In this study, the performance of the COAMPS deep

cloud forecasts was evaluated using observed GOES

LWP retrievals as ground truth. Manual inspections of

the LWP observations in conjunction with visible and

infrared satellite imagery indicate a strong likelihood

that deep cloud systems were well represented by the

retrievals. However, some care should be taken when

interpreting forecast quality from these results as the

satellite observations are subject to considerable vari-

ability that is difficult to estimate. The greatest errors

resulted from an underestimate of cloud depth at values

above 800 g m22. Presenting the results in a bias-corrected

form helped alleviate these issues.

The deep cloud forecasts evaluated during this period

displayed sufficient accuracy with respect to the satel-

lite observations to be considered quite useful. The ma-

jority of the synoptic-scale systems ($1000 km) were

well simulated with the primary error being an over

abundance of deep cloudiness in the forecasts. At

smaller scales, the model failed to capture the variability

FIG. 12. Forecast-based composites of hits and false alarms as determined by the (a),(b)

5- and (c),(d) 25-point FSS criteria applied to the 21-h mesoscale event forecasts. Observed

occurrence frequencies of LWP values $500 g m22 are contoured while predicted frequencies

are shaded. (left) Hits and (right) false alarms.
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depicted in the observations. Observed synoptic sys-

tems often consisted of several closely associated meso-

alpha-scale cloud masses that the model tended to

depict as contiguous areas. About 40%–50% of the

subsynoptic event predictions exceeded the 5 3 5 point

FSS-based quality standard, displaying little or no phase

error. Another 20%–30% of the subsynoptic forecasts

contained more moderate errors, including phase er-

rors, but still passed a 25 3 25 point FSS quality stan-

dard. The remaining forecasts contained significant

errors. Lag correlation calculations indicate the spatial

errors translate to a slow timing bias of approximately

3 h. In general, the model was able to discern between

quiescent and cloudy periods over the scale of the entire

region with correlation coefficients of 0.82, 0.87, 0.80,

and 0.80 at lead times of 9, 21, 33, and 45 h. Clear-sky

coverage was overestimated by the model, though many

of the overestimates occurred in regions that were partly

cloudy in the observations. When all observed cells

containing less than 50% clouds counted were assigned

clear values, the underestimate was alleviated. Such a

discrepancy likely results from the lack of subgrid-scale

cloudiness. The forecast skill as defined by the correla-

tions with the observations indicates that the model beat

persistence at lead times beyond and including 9 h.

Considering that these forecasts were located in an

oceanic region with relatively few observations, the re-

sults of this evaluation are quite encouraging.

Future work in this area will focus on improving the

cloud forecasts. Additional studies are planned to de-

termine the effects of horizontal and vertical grid res-

olution as well as adjustments to the microphysics and

turbulence schemes. Verification of cloud layer and

cloud-top characteristics are also planned. New instru-

ments such as CloudSat (more information is available

online at http://cloudsat.atmos.colostate.edu), the Cloud-

Aerosol Lidar and Infrared Pathfinder Satellite Obser-

vation (CALIPSO, more information is available online

at http://www-calipso.larc.nasa.gov), and the Atmospheric

Infrared Sounder (AIRS, more information is available

online at http://airs.jpl.nasa.gov) offer additional infor-

mation regarding cloud depth and cloud height that can

be used to refine current estimates. Research is cur-

rently being conducted toward this end.
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